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Abstract: Traditionally, publicly available repositories 
of certificates offer the usual response to the problem 
of public key distribution. After issuing a public-key 
certificate a certification authority (CA) – in the frame 
of a particular public-key infrastructure (PKI) – will 
store and publish that certificate in a repository so that, 
at a later moment, end-users can search, find and 
retrieve public-key certificates. A known and still 
persisting drawback of this approach is that these 
repositories are not interconnected between each other 
on an Internet scale, therefore the search and retrieving 
of certificates on a wider scale turns out to be very 
difficult. In this scenario, end-users are supposed to 
know the Internet location of the repository before 
actually starting the procedure of search and retrieval. 
Currently, there are no means to perform automatic 
discovery of authoritative repositories for a particular 
certificate using as a search-key some information 
identifying an Internet entity. In this paper, we try to 
describe a different approach for solving the key 
distribution  problem. This solution takes into account 
an already existing Internet-wide infrastructure: the 
domain name system (DNS). 
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INTRODUCTION 

 
In the field of Internet security, the major theoretical 
and technological breakthrough of the last century was 
the discovery of public-key cryptography (by M. Diffie 
and W. Hellman in 1976). With it, it became possible 
to have secure communication between Internet parties 
that had no a priori knowledge of each other. Public-
key cryptography is based on the following principle: 
each party has a pair of keys (cryptographically related 
one with another) where one of the keys is made 
public, and the other is kept private. Typically, the 
public key is made available to everyone by means of a 
public-key certificate [1] (a.k.a. certificate, or digital 
certificate). This approach has the advantage of 
granting trust into the real owner of the public key and 
is accomplished by a trusted third party (TTP). The 
entity in charge of issuing certificates (i.e., the TTP) is 
called a certificate authority (CA). A CA will perform 
a set of verifications (including one on the identity of 
the owner of the public key) before digitally signing 
the certificate. Hence, a public -key certificate 
represents a signed (i.e. trustworthy) assertion 
regarding the owner’s identity and the owner’s public 
key. 

Why is Key Distribution an Issue in Public-Key 
Infrastructures? 
 
The question titling this section may seem trivial at a 
quick look, however it hides a true problem when 
dealing with large-scale deployment of public-key 
technology within present-day Internet transactions. 
PKT-based security services require knowledge of 
public keys, and generally, a user of these services 
needs to obtain and validate certificates containing the 
required public keys. Currently, there are two types of 
globally available information retrieval systems that 
have utility: those designed for use by machines, and 
those designed for humans. The World-Wide Web is 
an example of an information retrieval system for 
humans, while DNS [2, 3] is an example of such a 
machine-oriented system. 

Usually, one aspect that is often taken for 
granted, and therefore ignored in practice, is that before 
relying on public-key technology (PKT) for secure 
communication, Internet parties must in someway get 
possession of the public key (or the corresponding 
certificate) belonging to the other party. Let’s assume 
for example the case of secure e-mail: in order to send 
confidential messages to his/her recipient(s), a user 
must obtain in some way the public key(s) of the 
recipients so that he/she can encrypt the message. 
Actually, the mechanism mentioned earlier relies on 
the user generating a symmetric key that will be used 
to encrypt the whole message, and afterwards the user 
will encrypt this symmetric key with the public key of 
each recipient. At receipt, each recipient will use 
his/her own private key to retrieve the encrypted 
symmetric key, and only then the recipient will  be able, 
using this symmetric key, to decrypt the e-mail 
message. The case we wanted to emphasize is known 
as the problem of public key distribution  (or certificate 
distribution). 

Today, the majority of CAs allows users to 
retrieve public -key certificates and certificate 
revocation lists (CRL) by storing them in publicly 
available repositories. A comprehensive definition of a 
PKI repository is summarized in: “A repository is a 
system or a collection of distributed systems that stores 
certificates and certificate revocation lists (CRL), and 
serves as a means of distributing these certificates and 
CRLs to end entities”. 

From the point of view of certificate-using 
entities the problem of key/certificate distribution is 
divided into two major parts: search and retrieval. The 
first part of the problem is a bit more delicate since it 
involves the process of finding the location of a 
certificate when there are available either full or only 



partial information that specifies the subject of the 
certificate. For examp le, in the case of secure e-mail 
the user may possess only the e-mail addresses of the 
recipients, and therefore the user must identify and 
obtain the certificates of the recipients by means of just 
that information. The second part of the problem 
addresses the actual mechanism by which certificates 
can be fetched by end entities. Taking into account all 
these facts, we can see how critical are the certificate 
distribution mechanisms for PKT-based services and 
PKI operations. PKI repositories are clearly the 
solution, and a lot of efforts were made for 
standardizing and implementing solutions that could 
satisfy basic requirements such as the ability of users to 
search and retrieve certificates for a target identity. 
Unfortunately, the problem of repositories is that they 
are local, closely tied to the PKI community they 
belong and consequently the problem of “where to look 
for the certificate of a given entity” still persists. In the 
following paragraphs, we will describe the typical 
mechanisms currently available for end-entities when 
facing the problem of retrieving certificates and CRLs. 

A directory is a specialized, distributed 
database that stores typed and ordered information. 
However, a directory is not a general-purpose 
relational database since it doesn’t support complicated 
transactions or rollback schemes that are usual for 
traditional DBMS. For directories, only few operations 
are optimized such as reading, browsing and searching, 
and this is because the main goal of directories is to 
provide quick responses to high volumes of lookup and 
search operations. Additionally, the data typically 
stored in directories is changing infrequently while the 
directory updates are simple all or nothing changes. In 
order to support reliability and availability of service, 
directories have the ability to replicate information 
with short synchronization times between replicas. 
Taking into consideration all the advantages of a 
directory service, certification authorities have 
traditionally implemented their repositories using the 
directory model. The repository will be available to 
end entities by means of one or more directory servers.  

Initially, X.509 certificates were thought to be 
stored in an X.500 directory. Due to technical, but 
mainly political difficulties encountered in trying to 
implement the full X.500 directory, there is currently 
no standard certificate distribution/storage mechanism. 
However, PKI repositories have been traditionally 
based on the lightweight directory access protocol 
(LDAP) [4, 5]. LDAP is much simpler than its 
precursor, the directory access protocol (DAP). LDAP 
is nothing more than an access protocol – compatible 
with the X.500 directory model – having one important 
advantage: it is independent of the particular 
technology employed by the underlying directory 
database. An LDAP directory stores information into a 
hierarchical manner, although the underlying database 
engine converts it back to flat format (that is, 
information is stored in rows of tables). 

The management of an LDAP server requires 
a lot of effort for setting up schemas and storing 
certificates into the directory. Additionally, the ability 
of LDAP servers to store certificates depends entirely 

on the certificate content, since LDAP servers can only 
store certificates that comply with the server's scheme 
and expected attribute structure. Unless the certificates 
were specially designed to work with the server's 
scheme, the server would not be able to store them. 
Therefore, schemas need to be modified due to the 
inappropriate matching between the existing object 
classes and the ones required by some certificates. And 
this leads to other problems, such as the rebuilding of 
the entire directory information tree. Due to these facts, 
it is questionable if LDAP servers will ever be able to 
act as a general-purpose certificate store. In the same 
context, there should not be ignored the interoperability 
problems raised from having different schemes for 
different LDAP servers. Finally, it is worth mentioning 
that up to now the LDAP directories have failed to 
aggregate into a globally available infrastructure. 

FTP (file transfer protocol) offers a viable 
solution for publishing and distribution of certificates 
and CRLs, being an attractive alternative to the 
traditional directory access protocols. A CA may 
choose to use an FTP server for publishing certificates 
and CRLs so that end entities can access this data by 
means of anonymous FTP. Below, there are depicted 
two uniform resource identifiers (URI) pinpointing 
user certificates and also one URI corresponding to a 
CRL, all of them based on an FTP distribution scheme: 
      ftp://ftp.europki.org/italian_ca/certs/marius_marian.cer 
      ftp://ftp.europki.org/italian_ca/certs/ID235.cer 
     ftp://ftp.europki.org/italian_ca/crl/crl.crl 
FTP is one good choice for Internet users since it is 
widely deployed and also because anonymous FTP is 
accommodated by many firewalls. Therefore end 
entities in Internet can easily retrieve certificate and 
CRLs via FTP once they obtained the particular URI. 
The disadvantage of using an FTP-based repository 
service resides in the fact that certificates cannot be 
located when there is available only some partial 
information identifying the certificate-owner (e.g. the 
e-mail address). 

HTTP represents another frequent solution for 
a PKI repository implementation. The idea is similar to 
the one previously described for FTP. A web server 
can represent for a CA an excellent means for 
publishing PKI-specific data. End entities can retrieve 
this data by means of HTTP-aware clients (e.g. Internet 
browsers). Examples of URI names pointing to 
certificates and CRLs are given below: 
   http://www.europki.org/italian_ca/certs/marius_marian.cer 
   http://www.europki.org/italian_ca/certs/ID235.cer 
   http://www.europki.org/italian_ca/crl/crl.crl 
The HTTP-based repository service is practical when 
Internet users are already having the URI identifying 
the certificate. Its strong point consists in the fact that 
nowadays HTTP is largely deployed in Internet, and is 
well accommodated by firewalls. However, HTTP is 
not of great help in cases where users are trying to find 
a certificate having only some partial information 
regarding the owner of the certificate, for example an 
e-mail address. 

The digital signature of a public-key 
certificate asserts its data content authenticity and 
integrity; hence, a public-key certificate doesn’t need 



particular security protections. For this reason, a 
certificate can be distributed by means of a variety of 
other mechanisms including here transfers through 
non-trusted systems, or using non-secure protocols. For 
example, the S/MIME protocol enables an end entity to 
send its public-key certificate along with a S/MIME 
message. 

Of course, the perspective of end entities 
waiting for S/MIME messages from all their peers in 
order to obtain their certificates just before being able 
to use public-key technology makes of little use such 
approaches. 

Another mechanism for distributing 
certificates is to have certificates hard-coded into 
relying party's application (this usually happens in 
common used browsers such as MS Internet Explorer, 
Mozilla and Netscape Navigator). This approach has 
substantial drawbacks, adding and removing 
certificates is difficult and also requires the user 
intervention. In practice, frequently users don't have a 
complete understanding of all issues involved in 
certificate management. Moreover, the solution is 
incomplete since only a limited number of certificates 
can actually be hard-coded (the certificates of CAs) 
while the user – on its own – must somehow retrieve 
all other certificates. It becomes clear that the 
scalability of public -key technology is highly 
dependent on easily accessible PKI repositories. 
 
 
THE DOMAIN NAME SYSTEM AND ITS 
SUPPORT FOR KEY DISTRIBUTION 
 
The Domain Name System (DNS) [2, 3] represents the 
set of protocols and services on a TCP/IP network that 
allows users of the network to use hierarchical user-
friendly names when looking for other hosts instead of 
having to remember and use their IP addresses. This 
system is used almost by any other application and 
protocol that is involved in network communication 
(e.g., web browsing, ftp, telnet or other TCP/IP utilities 
on Internet). In the ISO/OSI hierarchy, DNS is placed 
at application level, even though its usage is 
transparent to the users that simply refer to names 
instead of IP addresses, and it can use either TCP or 
UDP as transport protocols. In practice, DNS can be 
seen as a distributed database of names. These names 
establish a logical tree structure called the domain 
name space. A name server may cache information 
about any part of the domain tree, but in general it has 
complete information about a specific part of the 
domain name space. This means the name server has 
authority for that subdomain of the name space – 
therefore it will be called authoritative. Resolvers are 
programs that extract the information from name 
servers in response to client requests. Usually, 
resolvers are mainly relying on UDP (since the DNS 
queries and responses are well-suited for this protocol), 
but TCP might be used whenever truncation of the 
returned data occurs. 

A resource record (RR) represents the means 
by which the domain name system stores its data. Each 

RR may take one of the following two alternative 
forms:  
   domain_name    [TTL]    [CLASS]    TYPE    RDATA 
   domain_name    [CLASS]  [TTL]      TYPE    RDATA 
The domain_name  component of each RR specifies the 
owner of the data stored in the RDATA field. RRs are 
divided into classes, and each class denotes a type of 
network. Additionally, within each class of RRs, a type 
identifies the RR. Each type corresponds to a variety of 
data that DNS is able to store. 
 
 
Storing Public-Key Certificates in DNS 

 
RFC 2538 [6] proposes a resource record useful for 
storing public-key certificates within the DNS 
denominated CERT. The format of the CERT RR (that 
is the RDATA field above) is depicted below: 
       Type    KeyTag     Algorithm     Certificate/CRL  
The certificate type field is used for identifying the 
format of the certificate stored in the RR. Currently, 
DNS can store certificates conforming to X.509 
standard, SPKI proposal, and PGP standard. 
Consequently, the type field can be represented either 
as an unsigned integer that corresponds to the 
particular certificate format, or as a corresponding 
mnemonic (e.g. PKIX, SPKI, PGP). The key tag field 
is identical with the one defined within the DNSSEC 
specification. In the DNSSEC perspective, the key tag 
is used to differentiate between multiple public keys 
when having to verify a DNSSEC signature. Each 
signature (SIG) RR has a key tag field that is 
unequivocally identifying the public key that was used 
for creating that signature. To reduce the computational 
effort involved in the verification process, the key tag 
field is used to efficiently select the appropriate public 
key. The same applies for the case of CERT RR. The 
algorithm for calculating the two-octet key tag is 
implemented by the following C-language function:  
 
int compute_keytag (unsigned char *key, unsigned int 
keysize) 

{ 
    long int ac; 
    unsigned int i;  
 
    for (ac = 0, i = 0; i < keysize; ++i) 
        ac += (i&1) ? key[i] : key[i]<<8; 
    ac += (ac>>16) & 0xFFFF; 
   
    return ac & 0xFFFF; 
} 
 

The algorithm field is similar with the one pertaining 
to KEY and SIG resource records described in RFC 
2535 [7]. A zero algorithm field represents the only 
exception; such a case indicates that the algorithm was 
not considered in the initial DNSSEC specification. 
The algorithm field is represented either as an unsigned 
integer or as a mnemonic in conformity with. The 
certificate is included in the RDATA component of the 
CERT RR in a base64-encoded form. The certificate 
content may be divided into white-space separated 



substrings. An example of a CERT RR containing an 
X.509v3 public-key certificate is given below (for 
space-saving reasons, it was given only a small part of 
the actual base64 encoding of the certificate): 
 
marius.marian.polito.it  86400   IN   CERT   PKIX   
30132   RSAMD5   (MIIFhzCCBG+gAwIBAgICA O4 
wDQYJKoZIhvcNAQEFBQAwZTELMAkGA1UEBh
MCSVQx HjAcBgNVBAoTFVBvbGl0ZWNuaWNvI 
GRpIFRvcmlubzE2MDQGA1UEAxMtUG9saXRlY25
pY28gZG…) 
 
 
Practical Experiments 
 
The purpose of these experiments was the 
implementation of a PKI repository starting from the 
following observations. Even though commonly used 
applications such as mail user agents (MUA) are PKI-
enabled, in everyday practice e-mail messages are still 
exchanged without any means of protection. The main 
cause of this happening is the lack of an easy 
accessible, globally available repository. A secondary 
cause is the unawareness of people using the 
technology. While the second cause is difficult to 
eliminate, we believe that for the technology-related 
cause an easy solution can be provided. Additionally, 
IPsec is today the most common way in which security 
can be achieved at network layer. In practice, IPsec has 
been widely deployed to implement virtual private 
networks (VPN). In order to have a secure exchange of 
packets at IP layer, both the sending and the receiving 
devices must share a cryptographic key. The key 
management protocols involved in the IPsec's key-
exchange scheme can take advantage of a DNS-based 
repository. 

The practical experiments dedicated to testing 
the DNS support for PKI services were performed in 
the frame of EuroPKI [8] public -key infrastructure. 
The EuroPKI Certification Authority is a non-profit 
organization established to create and develop a pan-
European public-key infrastructure. Politecnico di 
Torino hosts the Root CA of the EuroPKI project. The 
experiments aimed to implement a DNS-based PKI 
repository for the certification authority of Politecnico 
di Torino (POLITO). For our experiments we have 
used Bind v9.1.2 [9] a popular, open-source DNS 
implementation. The master nameserver was installed 
on a Sun Ultra 5 workstation (Solaris 2.7) with a 
UltraSPARC-II CPU at 333 MHz and 256 MB RAM 
memory, while the secondary nameserver was installed 
on a Intel PIII 1 GHz Linux box with 256 MB of 
RAM. The zone files of these nameservers included all 
valid public-key certificates issued by POLITO CA. 
The experiment involved the most common types of 
certificates issued by POLITO CA:  
o personal certificates are used to bind a public key 

to the identity of an individual, and  
o server certificates are used to bind a public key to 

the identity of a network node or of a network 
service. 

These X.509v3 certificates issued by POLITO CA are 
not minimal certificates, since they include a 

significant set of certificate extensions. The average 
size of the DER-encoded POLITO CA certificates is 
around 1340 bytes for server certificates, and 
approximately 1400 bytes for personal certificates. It is 
worth mentioning that all these certificates contain 
1024-bit public keys. 

Previously, the certificates of POLITO CA 
were distributed to relying parties by means of an 
LDAP-based repository and also by means of a HTTP-
based repository. The personal certificates issued by 
POLITO CA are mainly used for securing services 
such as e-mail, and also for client authentication within 
PKI-aware applications, such as SSL-telnet and SSL-
ftp. 
 
 
Proposed Naming Scheme 
 
The CERT resource record allows mapping of public-
key certificates to domain names. Obviously, this 
mapping creates the opportunity of transforming the 
DNS into a globally available PKI repository. The 
primary requirement of DNS resides in its need for 
having some domain name associated with each entry. 
The standard requires that CERT RRs should be stored 
under a domain name related to their subject, that is the 
identity of the entity intended to control the private key 
corresponding to the certified public key. Translating 
the subject's distinguished name into a domain name is 
frequently a delicate and rather difficult problem. It is 
impossible to have a unique and definitive solution to 
this problem. Therefore, the standard provides a set of 
alternative solutions that could meet the above 
requirement. These solutions should be used in practice 
respecting the following order: 
o If a domain name is used for the identification of 

the certificate's subject, then that domain name 
should be used.  

o If a domain name is not included but an IP address 
is included, then the translation of that IP address 
into the appropriate inverse domain name should 
be used.  

o If neither of the above is used but a URI 
containing a domain name is present, then that 
domain name should be used.  

o If none of the above is present but a character 
string name specifying the subject's e-mail address 
is included, then the standard translation of the 
subject's e-mail address into a domain name 
should be used.  

o If none of the above applies, then the distinguished 
name (DN) should be mapped into a domain name 
as specified in RFC 2247 [10].  

Taking for example the personal certificates issued by 
POLITO CA, it can be observed that each certificate 
contains a SubjectAltName  extension. This extension 
specifies that an alternative name for the certified 
subject is his/her e-mail address. Starting with 2002, 
the internal regulation of Politecnico di Torino imposes 
for each individual affiliated to this institution mailing 
addresses in the form of: 
first_name.last_name@polito.it . The RFC 822 [11] 
format used for mailing addresses can be easily 



translated into a domain name just like in the following 
example: 

marius.marian@polito.it ?  marius.marian.polito.it 
Similarly, POLITO server certificates have the 
SubjectAltName  extension indicating the dNSName  of 
the host on which the server runs. The naming scheme 
used for storing certificates in our DNS-based 
repository will obey the following two rules: 
o In case of a personal certificate, it will be used the 

domain name corresponding to the standard 
translation of the individual's e-mail address 
(stored in the SubjectAltName  extension). 

o In case of a server certificate, it will be used the 
domain name stored in the SubjectAltName 
extension. 

 
 
Administration of Certificates 
 
The default policy is that all certificate of POLITO CA 
can be published in the DNS-based repository. 
However, certificate subscribers are questioned (at 
application time) if there are any privacy requirements 
impeding storage of their certificates in DNS. For 
publishing certificates into the DNS-based repository 
we have developed a set of software tools. These tools 
are used by the CA operator for the administration of 
the repository. The operations that must be performed 
for each newly issued certificate are: 
1. Search for the Subject field within the certificate 

content. Extract the value stored under this field 
corresponding to either an e-mail address or a 
domain name. In case of multiple choices, it will 
be applied – respecting the specific priorities – the 
CERT naming rules mentioned earlier. 

2. If the above process failed, search for the 
SubjectAltName  extension within the certificate 
content. Extract the value stored under this 
extension corresponding to either an e-mail 
address or a domain name. In case of multiple 
choices, it will be applied – respecting the specific 
priorities – the rules mentioned earlier. 

3. Once a domain name is determined, it will be 
created a CERT resource record for each newly 
issued certificate. For each CERT resource record, 
it will be determined the appropriate values of the 
necessary fields: TTL, class, and type. 
Additionally, it will be computed the RDATA 
fields: certificate type (usually PKIX certificates), 
the key tag and the algorithm type. Finally, the 
base64-encoding will be used for storing the actual 
certificate. 

4. Once a new RR is created the CA operator can 
upload this RR into the DNS database. After the 
DNS database was updated with the latest 
information, the nameserver will be signaled to 
reload its data. 

 
Scalability and Performance 
 
The transition to a new model for PKI-repository 
requires a careful analysis and one of the things to be 
considered before moving towards an innovative model 

is its scalability. Since most PKI repositories are built 
today on LDAP technology we found reasonable to 
compare the LDAP-based repositories with the DNS-
based approach. The tests were performed using open-
source implementations of LDAP and DNS. For LDAP 
the immediate choice was the OpenLDAP [12] 
implementation, whilst for DNS we have chosen the 
well-known implementation of BIND provided by the 
Internet Software Consortium. 

One PKI problem is that mapping from a 
X.500 name to a different name space often becomes 
extremely difficult. Since Internet communication 
today is naturally expressed in terms of DNS names, it 
is reasonable to have DNS-based repositories for 
public-key certificates if we want to provide security 
features based on PKI technology to Internet 
transactions. 

The first disadvantage of LDAP compared 
with DNS is that, currently, it fails the test of 
deployment on a global scale. Moreover, locating a 
certificate can turn to be extremely difficult if a relying 
party does not know which is the authoritative LDAP 
server that can answer a potential search request. 
Usually, a relying party searching for another entity's 
certificate is holding only a partial set of information 
identifying the target entity: an e-mail address or 
simply a host name. Discovering authorities in DNS 
was a design goal and Internet works today also thanks 
to this feature. Resolvers are able to parse the entire 
DNS tree (using referrals from intermediate 
nameservers) in order to find an authoritative name 
server they can interrogate. 

Nowadays, LDAP server implementations 
allow administrators to configure referrals to other 
LDAP servers in cases where requests arrive for data 
outside the authoritative domain. However, given that 
so far it wasn't actually implemented a global LDAP 
infrastructure (as is the case with DNS) – and, more 
importantly, there are no perspectives in the near future 
for a global standard meant to link LDAP servers to 
each other – the usage of referrals in LDAP is of little 
use. In other words, an end entity - having only a small 
piece of information about its peer – would have 
problems in determining the authoritative LDAP server 
that could provide the peer's certificate. Consequently, 
discovery of authorities is difficult in LDAP, and it 
can't be done in a dynamic and simple way (as it is 
currently done in DNS). Moreover, partitioning the 
directory information tree is possible in LDAP, even 
though it is a lot harder than in DNS, and this operation 
always requires the presence of a master server. But, 
partitioning the tree usually results in a non-uniform 
distribution of data, and every query still has to go 
through the root of the tree.  In this way, searching the 
tree will always be limited by the performance of any 
one single directory server. All these facts put in doubt 
the current scalability potential of LDAP. 

An LDAP query will always require a TCP 
connection, thus the TCP protocol overhead will 
always be present with its inherent latency. On the 
other hand, DNS is capable to operate on both TCP and 
UDP. The advantage of using DNS over UDP consists 
in the fact that a client will always make one query and 



will receive one response (be it a referral or an 
authoritative answer). It was observed that LDAP 
requires one round trip to set up the connection 
followed by two round trips for sending a client bind 
request and receiving the server bind response. Then, 
the actual lookup query requires another round trip. 
When answering a search query, the LDAP protocol 
assembles the response data in so-called search entry 
packets. There can be zero or more such packets 
depending on how many LDAP entries have matched 
the lookup filter. However the status of this lookup 
transaction will be always sent in a search response 
packet. Immediately after the search response was 
delivered, the client usually closes the TCP connection 
by means of an LDAP unbind request. The fact is that 
one TCP connection needs a minimum of 5 packets 
(usually 6) for setup and tear down, excluding data 
packets, thus requiring at least 3 round trips on top of 
the one for the original UDP query! During the 
practical tests, it was observed that a DNS-based query 
is taking fewer round trips than an LDAP-based query 
even when the DNS-based query was to be retried via 
TCP. However a DNS resolver can be easily instructed 
to start a connection directly via TCP avoiding thus the 
sometimes-useless round trip involved in the initial 
UDP transaction.  

Traditionally, the size of DNS messages on 
UDP was limited to a maximum size of 512 bytes. The 
512 bytes limit was imposed in the first place to reduce 
the probability of fragmentation of DNS responses. 
Lately, efforts have been made to extend the 
performance of DNS nameservers in order to support 
DNS messages greater than 512 bytes. The DNS 
extension mechanism EDNS0 [13] allows resolvers to 
inform nameservers that they are able to process DNS 
responses larger than 512 bytes. Thus, if the expected 
answer is between 512 octets and the maximum size 
that the client can accept (that is the maximum transfer 
unit of the client’s stack), the additional overhead of a 
TCP connection can be avoided. Using this extension 
mechanism in a series of tests, we have noticed that 
DNS is able to use without problems UDP for DNS 
messages up to 4096 bytes on an Ethernet network 
(where the maximum transmission unit is 1500 bytes). 
Of course, different OS stacks impose different upper 
limits for the UDP datagrams those stacks can handle 
and reassemble.  

Both TCP and UDP have their specific 
overhead (20 bytes for TCP and 8 bytes for UDP).  
Taking into account these values, the maximum 
payload for an Ethernet packet results to be of 1460 
bytes when using TCP/IP, and 1472 bytes via UDP/IP. 
If we correlate the maximum payload with the sizes of 
the certificates described earlier (POLITO CA 
certificates range between 1340 – 1400 bytes), we can 
easily see the advantage of using DNS for retrieval of 
certificates. Moreover, since the majority of OS stacks 
today are able to reassemble UDP packets up to 4 KB 
then there is not a problem for applications to use DNS 
for locating and fetching public-key certificates 
whenever the DNS extension mechanism (EDNS0) is 
present. 

Another interesting aspect regards the support 
for the two protocols in the operating systems available 
today. On one hand, for DNS we have universal OS 
support, whilst for LDAP few OS are supporting it 
now, consequently patches or/and updates are 
necessary on client platforms. 

The DNS-based approach presented in this 
paper has two important issues that require careful 
attention for implementation: first, the transition from 
X.500 distinguished names to DNS names, is not 
always as straightforward as that encountered in our 
experiments. Second, firewalls are known to interfere 
with the UDP protocol (even though it is assumed that 
the DNS traffic will be allowed) consequently, it may 
happen that, sometimes, the DNS queries and 
responses will be blocked. 

 
 
CONCLUSIONS 
 
One serious obstacle to the availability of public-key 
cryptography everywhere and every time is the lack of 
a worldwide, easy-accessible repository for digital 
certificates. DNS provides a unique opportunity for 
PKIs: to take advantage of a system that is already 
deployed on a global scale, and which conforms 
exactly with the way in which people in Internet 
communicate the name of the host to whom they want 
to connect, or the name of the person to whom they 
want to send a message. The latest security extensions 
of the DNS protocol support a new, encouraging 
perspective for public -key technology: extended DNS 
may act as a global PKI repository. This potential can 
be used by a variety of PKI-aware protocols  (such as 
S/MIME, and IPsec).  
 
REFERENCES 
 
[1] R. Housley, W. Polk, W. Ford, D. Solo, Internet X.509 
Public Key Infrastructure Certificate and CRL Profile. IETF, 
RFC 3280, April 2002. 
[2] Paul Mockapetris, Domain Name System - Concepts and 
Facilities, RFC 1034, November 1987. 
[3] Paul Mockapetris, Domain Name System - 
Implementation and Specification, RFC 1035, November 
1987. 
[4] M. Wahl, T. Howes, S. Kille, Lightweight Directory 
Access Protocol, RFC 1777, March 1995. 
[5] M. Wahl, T. Howes, S. Kille, Lightweight Directory 
Access Protocol (v3), RFC 2251, December 1997. 
[6] Donald Eastlake, Olafur Gudmundsson, Storing 
Certificates in the Domain Name System , RFC 2538, March 
1999. 
[7] Donald Eastlake, Domain Name System Security 
Extensions, RFC 2535, March 1999. 
[8] EuroPKI project – http://www.europki.org 
[9] BIND - Open-source implementation of DNS, Internet 
Software Consortium, available at http://www.isc.org/bind/. 
[10] S. Kille, M. Wahl, A. Grimstad, R. Huber, S. Sataluri, 
Using Domains in LDAP/X.500 Distinguished Names, RFC 
2247, January 1998. 
[11] D. Crocker, Standard for the format of ARPA Internet 
Text Messages, RFC 822, August 1982. 
[12] OpenLDAP - Open-source implementation of LDAP, 
OpenLDAP group, available at http://www.openldap.org/. 
[13] P. Vixie, Extension Mechanisms for DNS (EDNS0), RFC 
2671, August 1999. 


